Graphing $y=a x^{2}+c$

Lesson 8.3

Key Idea

Graphing $y=x^{2}+c$

- When $c>0$, the graph of $y=x^{2}+c$ is a vertical translation c units up of the graph of $y=x^{2}$.
- When $c<0$, the graph of $y=x^{2}+c$ is a vertical translation $|c|$ units down of the graph of $y=x^{2}$.

Graph $y=x^{2}-2$. Compare the graph to the graph of $y=x^{2}$.
Step 1: Make a table of values.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	2	-1	-2	-1	2

Step 2: Plot the ordered pairs.

:- Both graphs open up and have the same axis of symmetry, $x=0$. The graph of $y=x^{2}-2$ is a translation 2 units down of the graph of $y=x^{2}$.

EXAMPLE 2 Graphing $y=a x^{2}+c$

Graph $y=4 x^{2}+1$. Compare the graph to the graph of $y=x^{2}$.

x	-2	-1	0	1	2
y	17	5	1	5	17

\because - Both graphs open up and have the same axis of symmetry, $x=0$. The graph of $y=4 x^{2}+1$ is narrower than the graph of $y=x^{2}$. The vertex of the graph of $y=4 x^{2}+1$ is a translation 1 unit up of the vertex of the graph of $y=x^{2}$.

EXAMPLE

Which of the following is true when you translate the graph of $y=x^{2}-4$ to the graph of $y=x^{2}+5$?
(A) The graph shifts 1 unit up.
(C) The graph shifts 9 units down.
(B) The graph shifts 9 units up.
(D) The graph shifts 1 unit down.

Both graphs open up and have the same axis of symmetry, $x=0$. The vertex of $y=x^{2}-4$ is $(0,-4)$. The vertex of $y=x^{2}+5$ is $(0,5)$. To move the vertex from $(0,-4)$ to $(0,5)$, you must translate the graph 9 units up.

The correct answer is B.

A zero of a function $f(x)$ is an x-value for which $f(x)=0$. A zero is located at the x-intercept of the graph of the function.

In other words, a "zero" of a function is an input value (x) that produces an output (y) of zero.
An alternative name for such a point $(x, 0)$ in this context is an x-intercept.

Examples:

$$
\text { a. } \begin{aligned}
y & =x^{2}-9 \\
0 & =x^{2}-9 \\
0 & =(x+3)(x-3) \\
x & +3=0 \text { or } x-3=0 \\
x & =-3 \text { or } x=3
\end{aligned}
$$

Zeros are - 3,3
b. $y=-x^{2}+16$
$0=-x^{2}+16$

$$
0=x^{2}-16
$$

$$
0=(x+4)(x-4)
$$

$$
x+4=0 \text { or } x-4=0
$$

$$
x=-4 \text { or } x=4
$$

Zeros are -4, 4

EXAMPLE

4. Rea-Life Application

The function $f(t)=-16 t^{2}+s_{0}$ gives the approximate height (in feet) of a falling object t seconds after it is dropped from an initial height s_{0} (in feet). An egg is dropped from a height of 64 feet. When does the egg hit the ground?
64 ft The initial height is 64 feet. So, the function $f(t)=-16 t^{2}+64$ gives the height of the egg after t seconds. It hits the ground when $f(t)=0$.

Step 1: Make a table of values and sketch the graph.

t	0	1	2
$\boldsymbol{f}(\boldsymbol{t})$	64	48	0

Step 2: Find the zero of the function.

$$
\begin{aligned}
& 0=-16\left(t^{2}-4\right) \\
& 0=-16(t+2)(t-2) \\
& t+2=0 \text { or } t-2=0
\end{aligned}
$$

$$
t=-2 \text { or } t=2 \quad \text { The egg hits the ground } 2
$$

