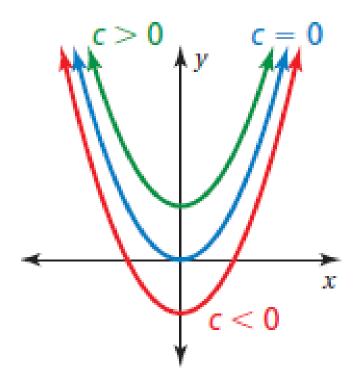
Graphing $y = ax^2 + c$ Lesson 8.3

Key Idea

Graphing $y = x^2 + c$

- When c > 0, the graph of y = x² + c is a vertical translation c units up of the graph of y = x².
- When c < 0, the graph of $y = x^2 + c$ is a vertical translation |c| units down of the graph of $y = x^2$.



Graphing $y = x^2 + c^2$

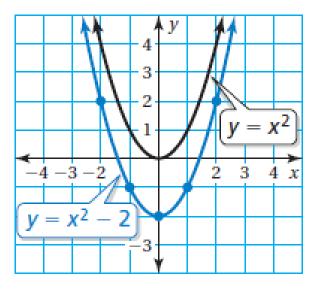
EXAMPLE

Graph $y = x^2 - 2$. Compare the graph to the graph of $y = x^2$.

Step 1: Make a table of values.

x	-2	-1	0	1	2
У	2	-1	-2	-1	2

Step 2: Plot the ordered pairs.



Both graphs open up and have the same axis of symmetry, x = 0. The graph of $y = x^2 - 2$ is a translation 2 units down of the graph of $y = x^2$.

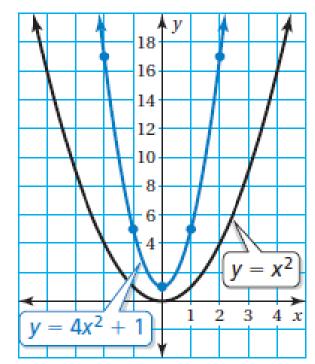
EXAMPLE

2 Graphing $y = ax^2 + c$

Graph $y = 4x^2 + 1$. Compare the graph to the graph of $y = x^2$.

x	-2	-1	0	1	2
у	17	5	1	5	17

Both graphs open up and have the same axis of symmetry, x = 0. The graph of $y = 4x^2 + 1$ is narrower than the graph of $y = x^2$. The vertex of the graph of $y = 4x^2 + 1$ is a translation 1 unit up of the vertex of the graph of $y = x^2$.



EXAMPLE 3 Translating the Graph of $y = x^2 + c^2$

Which of the following is true when you translate the graph of $y = x^2 - 4$ to the graph of $y = x^2 + 5$?

The graph shifts 1 unit up.
The graph shifts 9 units down.
The graph shifts 9 units down.

Both graphs open up and have the same axis of symmetry, x = 0. The vertex of $y = x^2 - 4$ is (0, -4). The vertex of $y = x^2 + 5$ is (0, 5). To move the vertex from (0, -4) to (0, 5), you must translate the graph 9 units up.

The correct answer is B.

A **zero** of a function f(x) is an *x*-value for which f(x) = 0. A zero is located at the *x*-intercept of the graph of the function.

In other words, a **"zero" of a function** is an input value (X) that produces an output(Y) of **zero**. An alternative name for such a point (X, 0) in this context is an x-intercept.

Examples:

<i>a</i> . $y = x^2 - 9$	b. $y = -x^2 + 16$
$0 = x^2 - 9$	$0 = -x^2 + 16$
0 = (x + 3)(x - 3)	$0 = x^2 - 16$
x + 3 = 0 or $x - 3 = 0$	0 = (x+4)(x-4)
x = -3 or $x = 3$	x + 4 = 0 or $x - 4 = 0$
Zeros are -3, 3	$x = -4 \ or \ x = 4$
	Zeros are -4, 4

EXAMPLE

4

Real-Life Application

The function $f(t) = -16t^2 + s_0$ gives the approximate height (in feet) of a falling object *t* seconds after it is dropped from an initial height s_0 (in feet). An egg is dropped from a height of 64 feet. When does the egg hit the ground?

⁶⁴ ft The initial height is 64 feet. So, the function $f(t) = -16t^2 + 64$ gives the height of the egg after *t* seconds. It hits the ground when f(t) = 0.

Step 1: Make a table of values and sketch the graph.

t	0	1	2
f (t)	64	48	0

Step 2: Find the zero of the function.

 $0 = -16(t^{2} - 4)$ 0 = -16(t + 2)(t - 2) t + 2 = 0 or t - 2 = 0 t = -2 or t = 2The zero is 2.

The egg hits the ground 2 seconds after it is dropped.